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Abstract. Moiré superlattices, a twisted functional structure crossing the periodic and nonperiodic potentials,
have recently attracted great interest in multidisciplinary fields, including optics and ultracold atoms, because
of their unique band structures, physical properties, and potential implications. Driven by recent experiments
on quantum phenomena of bosonic gases, the atomic Bose–Einstein condensates in moiré optical lattices,
by which other quantum gases such as ultracold fermionic atoms are trapped, could be readily achieved in
ultracold atom laboratories, whereas the associated nonlinear localization mechanism remains unexploited.
Here, we report the nonlinear localization theory of ultracold atomic Fermi gases in two-dimensional moiré
optical lattices. The linear Bloch-wave spectrum of such a twisted structure exhibits rich nontrivial flat
bands, which are separated by different finite bandgaps wherein the existence, properties, and dynamics of
localized superfluid Fermi gas structures of two types, gap solitons and gap vortices (topological modes) with
vortex charge S ¼ 1, are studied numerically. Our results demonstrate the wide stability regions and
robustness of these localized structures, opening up a new avenue for studying soliton physics and moiré
physics in ultracold atoms beyond bosonic gases.
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1 Introduction
Optical lattices, artificial periodic potentials generated by coun-
terpropagating multiple laser beam interferences, are one of
the enabled and particularly attractive transformative technolo-
gies for studying and controlling the nonlinear and quantum
(many-body physics) properties of ultracold atomic gases.1–3

Ultracold atoms such as Bose–Einstein condensates, loaded
upon various kinds of optical lattices, have resulted in the
discovery of novel physics and the creation of a great many
emergent nonlinear phenomena such as diverse matter-wave
solitons.4–7 Deserved to be mentioned, localized gap modes
in the forms of gap solitons and vortices can be launched
and investigated in ultracold atoms (no matter Bose–Einstein
condensates and degenerate Fermi gases or their coalition)

trapped by optical lattices that own a forbidden atomic
bandgap.8–21

In condensed matter physics territory, a recently achieved
major triumph was the observations of remarkable physical
effects referring to unconventional superconducting under small
magic twisted angles and strongly correlated insulating proper-
ties (to name a few) in two-dimensional (2D) twisted bilayer
graphene, which belongs to a new 2D material called moiré
superlattices consisting of a periodic structure overlapped with
its copy but twisted in a certain angle.22–26 Twistronics has thus
emerged as an active research frontier in the past few years.27–29

Stimulated by such a stream of research, revealing linear, non-
linear, and quantum physical peculiarities of light and matter
waves in moiré patterns and transformational structures has re-
cently been extended to the optics and photonics contexts.30–44

Particularly, the linear localization of light and transition
between localization and delocalization due to the unique*Address all correspondence to Jianhua Zeng, zengjh@opt.ac.cn
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flat-band property has been first confirmed in photonic moiré
lattices;31 in such a setting but adding nonlinearity, an extremely
low threshold of optical soliton formation via twisted angle was
also observed experimentally by the same group.32 Other locali-
zation and quantum physics were also recently revealed in moiré
structures of different kinds.33–44

Very recently, new solitons physics and nonlinear localiza-
tion mechanisms have been popping up in nonlinear optics
and physics settings with moiré structures.33,45–50 These include,
but are not limited to, the generation of multifrequency solitons
in quadratic nonlinear media,45 light bullets,46 and vortex
solitons47 as well as 2D Thouless pumping33 of light in photonic
moiré lattices; linear and nonlinear light localizations at the
edges of moiré arrays;48 2D gap solitons in parity-time symmet-
ric and regular moiré optical lattices;49 matter-wave gap solitons;
and vortices in dense Bose–Einstein condensates with moiré
optical lattices.50 However, one can find that all these soliton
studies are in the Boson settings;33,45–50 it is instructive to study
soliton formations and disclose the nonlinear localization theory
in other physical settings such as degenerate Fermi gases.

This work is intended to explore how the nonlinear localiza-
tion of superfluid Fermi gases trapped by moiré optical lattices
works and what kinds of robust localized gap modes can be cre-
ated and how to launch them. By means of linear Bloch theory,
we find that such 2D twisted bilayer optical lattices have abun-
dant extremely flat bands and that the widths of numbered finite
gaps vary differently with the change of twisted angle and
strength contrast of the two sublattices. Our systematic numeri-
cal simulations and theoretical analysis demonstrate that the
band flatness could enable us to construct robust 2D localized
gap modes as fundamental gap solitons and vortices (with im-
printed vorticity S ¼ 1) inside the several finite gaps (whose
first, second, third, fourth, and fifth finite gaps are examined).
The robustness of both localized gap modes implies that the
moiré optical lattices can be set as an ideal platform for predict-
ing and observing emergent nonlinear wave structures in the
settings of ultracold atomic gases with shallow (small strength)
lattices, providing a new degree of freedom in exploring and
tuning the nonlinear physics of ultracold atom settings with di-
verse gases. We would like to emphasize that while flat bands
appear also in conventional optical lattices; the condition is that
the optical lattices should be fabricated deep enough (very large
lattice strength, hard to realize) or in special spatial configura-
tions. The nonlinear localization physics revealed here is pos-
itive, timely, and meaningful, given the fact that the atomic
Bose–Einstein condensate has recently been prepared in twisted
bilayer optical lattices,51 and its Fermi counterpart (superfluid
fermion gas in moiré optical lattices) can be readily implemented
in the current state-of-the-art ultracold atomic laboratories.

2 Model and Its Linear Bloch Spectrum

2.1 Theoretical Model

Nonlinear evolutional dynamics of a 2D ultracold Fermi gas
(Bardeen Cooper Schrieffer superfluid of spin-1/2 Fermionic
atoms) loaded onto the moiré optical lattices in mean-field theory
is governed by the density-functional equation (theory), whose
scaled wave function (complex order parameter), ψ , yields16–18

i
∂ψ
∂t ¼ − 1

2
∇2ψ þ VOLðRÞψ þ gjψ j43ψ ; (1)

where R ¼ ðx; yÞ and Laplacian ∇2 ¼ ∂2∕∂x2 þ ∂2∕∂y2, the
nonlinear coefficient, g, represent repulsive (self-defocusing)
nonlinearity induced by atom–atom collisions, set as g ¼ 1
(for discussion), which, in reality, can be tuned using the
Feshbach resonance technology.52 It is relevant to remark that
the nonlinearity represents a repulsive nonlinear term of power
7/3, which is unique for degenerate Fermi gases.

The 2D moiré optical lattices, consisting of two uniform
square lattices with a twisted angle θ to each other, follow

VOLðRÞ ¼ V1ðcos2 xþ cos2 yÞ þ V2ðcos2 x0 þ cos2 y0Þ; (2)

where V1,2 > 0 represents the modulation depth (amplitude) of
the two optical lattices with periodicity π. For convenient dis-
cussion, we take the strength difference as P ¼ V2∕V1 and
set V1 ¼ 2 and V2 ¼ 4 throughout; otherwise it is highlighted.
The transformation between the ðx; yÞ and ðx0; y0Þ planes is, in
mathematics and real spaces, defined by a rotating angle θ:

�
x0

y0

�
¼

�
cos θ;− sin θ
sin θ; cos θ

��
x
y

�
: (3)

One can know from Eq. (2) that the moiré optical lattice re-
turns to the normal square lattice if we set V2 ¼ 0 or θ ¼ 0. The
extraordinary feature of such a moiré pattern is that, when
gradually changing the rotating angle θ (between the two
sublattices), the moiré optical lattice will be continuously
transformed into the periodic and aperiodic structures, thereby
filling a gap crossing of perfect periodic potentials and aperiodic
structures and opening a new strategy for light-field manipula-
tion (bandgap engineering) and its nonlinear dynamic control
dependent merely on a new rotating degree of freedom of the
sublattices even though under shallow lattice modulation. As
pointed out in previous publications,30–33,44,49,50 such a moiré
optical lattice allows the existence of the widest finite gaps
separated by neighboring extremely flat Bloch bands provided
that it is the perfect periodic pattern which, in fact, is achieved
only if we consider the special case of Pythagorean angles
θ ¼ arctanða∕bÞ, with cos θ ¼ a∕c, sin θ ¼ b∕c, and natural
numbers ða; b; cÞ constitute Pythagorean triples, a2 þ b2 ¼ c2.

The stationary solitary matter-wave solution ϕ under chemi-
cal potential μ can be constructed as ψ ¼ ϕe−iμt, and after sub-
stituting it into the dynamical fundamental equation [Eq. (1)],
one can get the stationary equation,

μϕ ¼ − 1

2
∇2ϕþ VOLðRÞϕþ jϕj43ϕ: (4)

Equation (4) holds the norm (number of atoms)
N ¼ RR jϕj2dx dy.

2.2 Linear Bandgap Properties

Although the fact that the moiré patterns could be twisted with
arbitrary angles θ, allowing ample band diagrams to emerge ac-
cordingly, the Pythagorean lattices (the moiré optical lattice
under the unique case of Pythagorean angles θ, as stressed
above) support the optimal bandgap tuning, which is the spatial
tailoring of the largest width of the finite gaps, within which
the localized gap modes of diverse types to be excited are of
our fundamental interest. Our attention here is only paid to the
moiré optical lattices at different Pythagorean twisted angles θ,
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which, in fact, are equipped with periodic translational sym-
metry, and therefore, the general linear Bloch bandgap theory
widely used in solid-state physics and other periodic potentials,
including photonic crystals and optical lattices, can be readily
applied here. Bearing this in mind, one can produce the under-
lying linear Bloch spectrum after a routine operation.

Contour profiles of Pythagorean moiré optical lattices under
three different Pythagorean twisted angles θ ¼ arctanð3∕4Þ,
θ ¼ arctanð5∕12Þ, and θ ¼ arctanð8∕15Þ are depicted in
Figs. 1(a)–1(c), respectively. The three twisted angles enlarge
the lattice period of moiré optical lattices as compared with
the original square lattices (ε2 ¼ 0 or θ ¼ 0). Ignoring the last
nonlinear term of Eq. (4), calculating the corresponding eigen-
values within the first Brillouin zone in the reciprocal space
[which is depicted in the inset of Fig. 1(d)], one can get the lin-
ear Bloch spectrum under the same strength difference P ¼ 0.5,
as displayed separately in Figs. 1(d)–1(f) and in the bottom line
of the figure with red dashed vertical lines. Once again, we can

see that, as those discovered in other Pythagorean moiré lattices,
despite being shallow, there are abundant flat Bloch bands for
the Pythagorean moiré optical lattices; strikingly, the former fea-
tures a very narrow gap (which we name minigap “Q”) between
the first and second gaps; the latter two cases exhibit more flat
bands, and the higher finite gaps can be wider than their first
one. Further research revealed that, for the former case, the
widths of both the first gap and minigap decrease when increas-
ing P, and the minigap (Q) disappears at P > 0.53, while the
second gap’s width grows gradually [Fig. 1(g)]; by comparison,
the first gap’s width increases, whereas the decrease is only for
the fourth and fifth gaps for the latter two cases, according to
Figs. 1(h) and 1(i). These rich linear bandgap properties of
moiré optical lattices indicate that very flexible and tunable
bandgap engineering can be achieved by simply changing the
rotating angle θ and strength difference P, providing a new linear
(flat-band) localization mechanism (different from that of
Anderson localization) of optical and matter waves,31 and robust

Fig. 1 Linear Bloch-wave band structures of 2D moiré square optical lattices. The geometries,
reduced Brillouin zone, and bandgap spectra of the 2Dmoiré square optical lattices under different
Pythagorean twisted angles. Platforms of the moiré lattice (shaded red, lattice potential maxima;
shaded blue, lattice potential minima) at different rotation angles: (a) θ ¼ arctanð3∕4Þ,
(b) θ ¼ arctanð5∕12Þ, and (c) θ ¼ arctanð8∕15Þ, and the linear Bloch-wave spectrum (indicated
as chemical potential μ) of the moiré lattice with different twisted angles: (d) θ ¼ arctanð3∕4Þ,
(e) θ ¼ arctanð5∕12Þ, and (f) θ ¼ arctanð8∕15Þ; subplot in panel (d) shows the first reduced
Brillouin zone in the reciprocal space, where the associated high symmetry points are marked.
The width of the finite gaps versus the relative strength of two layers of the lattice (P) under
different twisted angles: (g) θ ¼ arctanð3∕4Þ, (h) θ ¼ arctanð5∕12Þ, and (i) θ ¼ arctanð8∕15Þ.
The second and third lines: the Roman numerals I, II, III, IV, and V are the first, second, third,
fourth, and fifth finite gaps, respectively; Q in panels (d) and (g) is the very narrow minigap.
P ¼ 0.5 for panels (a)–(f).
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Fig. 2 Properties of fundamental gap solitons of ultracold Fermi gases controlled by moiré square
optical lattices. Number of atoms, N , versus chemical potential μ (a)–(c), respectively, and the same
sublattice depth (P ¼ 1) under V 0 ¼ V 1 ¼ V 2 (d) for the fundamental gap solitons, whose profiles
for marked points (A, B, and C) in panel (a) are shown in the third line, in 2D moiré square optical
lattices at twisted angles: (a), (d) θ ¼ arctanð3∕4Þ, (b) θ ¼ arctanð5∕12Þ, and (c) θ ¼ arctanð8∕15Þ.
Other parameters: (d) μ ¼ 4; (e) μ ¼ 4, N ¼ 14.7; (f) μ ¼ 4.7, N ¼ 36.8; (g) μ ¼ 5.18, N ¼ 66.4.
Here and below, red dashed lines in panels (a)–(c) represent unstable regions.

Fig. 3 Perturbed evolutions of fundamental gap solitons. Top-view profiles (a)–(c) and the per-
turbed evolution in real time (d)–(f) of typical fundamental gap solitons for the marked points
(A, B, and C) in Fig. 2(a): stable (a), weakly unstable (b), and strongly unstable (c) gap solitons.
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nonlinear localization of various localized gap modes within
those numbered finite gaps of the associated linear Bloch spectra,
as will be presented below.

Before going further, let us introduce the numerical calcula-
tion recipes for launching the localized gap modes and testing
their stability, which yield the following: the stationary solutions
of the localized gap modes under consideration are first
constructed through Eq. (4) using the widely used method—
modified squared-operator iteration method;53 then, the stability
and instability properties of the gap modes thus found will be
scrutinized in direct perturbed numerical computation of the
dynamical equation [Eq. (1)] by taking a converged and highly
accurate computational approach called the fourth-order Runge–
Kutta method.

3 Numerical Results and Discussions

3.1 Fundamental Gap Solitons

We first survey the excitation of the simplest matter-wave
localized gap modes with a single peak and isotropic shapes
called fundamental gap solitons, which can be upheld by
the Pythagorean moiré optical lattices [Eq. (2)], as done in con-
ventional periodic potentials. As far as the aforementioned
three Pythagorean twisted angles [θ ¼ arctanð3∕4Þ, θ ¼
arctanð5∕12Þ, and θ ¼ arctanð8∕15Þ] are concerned, the corre-
sponding relationships among the number of atoms, N, and
chemical potential μ for the fundamental gap solitons are,
respectively, depicted in Figs. 2(a)–2(c), showing a growing

Fig. 4 Properties of gap vortices of ultracold Fermi gases loaded upon moiré square optical
lattices. Number of atoms, N, versus chemical potential μ (a)–(c) and the same sublattice depth
(P ¼ 1) under V 0 ¼ V 1 ¼ V 2 (d) for the vortex gap solitons at topological charge S ¼ 1 in 2D
moiré square optical lattices at twisted angles: (a), (d) θ ¼ arctanð3∕4Þ, (b) θ ¼ arctanð5∕12Þ,
and (c) θ ¼ arctanð8∕15Þ. Other parameters: (d) μ ¼ 4; (e) μ ¼ 3.5, N ¼ 9.4; (f) μ ¼ 4.6,
N ¼ 120.5; (g) μ ¼ 5.25, N ¼ 256.1. Red dashed lines in panels (a)–(c) represent unstable
regions. The cross section (taken at y ¼ 1.5), the associated profiles, and phase structures are
depicted in the third, fourth, and fifth lines, respectively.
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tendency through the first gap to the higher ones, and abiding
by the well-known principle of the “anti-Vakhitov–Kolokolov”
criterion, dN∕dμ > 0, an indispensable condition for the stable
gap solitons under the regime of repulsive (defocusing)
nonlinearity.6,8–15,54 Detailed numerical perturbed calculations
in the dynamics equation [Eq. (1)] reveal that these fundamental
gap solitons are robustly stable localized modes existing in the
middle of the finite gaps; they tend to be unstable near the edges
of Bloch bands, as underlined in the figures. Moreover, we have
examined the dependence between N and the same sublattice
depth V0 ¼ V1 ¼ V2, which is summed up in Fig. 2(d), dem-
onstrating a decreasing trend with the increase of V0; it coin-
cides with the significant experimental finding of low
threshold (of the laser power in nonlinear optics) for the forma-
tion of optical solitons in photonic moiré lattices. It is necessary
to note that the typical profiles of the so-found fundamental gap
solitons are shown in Figs. 2(e)–2(g), where the former is a sta-
ble gap soliton owning negligible side peaks, while the latter
two are unstable ones accompanied by multiple side peaks that
are induced by strong Bragg scattering. Such side peaks of the
latter two solitons may cause instability in the course of time
evolution.

In the perturbed time evolution, as shown in Fig. 3, the stable
fundamental gap soliton sustains its shape [Fig. 3(a)], while
there are oscillating or growing side peaks (lobes) for the un-
stable fundamental modes [Figs. 3(b) and 3(c)]. Further insights
into their evolutions confirm that the unstable fundamental gap
solitons are only in the weakly unstable mode; this once again
verifies the excellent platform for soliton formation and control
in physical settings with moiré optical lattices.

3.2 Vortex Gap Solitons with Topological Charge S ¼ 1

Amore interesting thing is that whether such Pythagorean moiré
optical lattices can give rise to robust vortex gap solitons and
how to stabilize them at will. It is thus the target in this section
to reveal these issues for gap vortices, the vortex gap solitons
with topological charge S; for the sake of discussion, we only
consider the case of S ¼ 1. As reported elsewhere, such gap vor-
tices are usually featured by a null value in the middle and con-
sist of four bright (fundamental gap solitons) modes/peaks that
are entangled with π∕2 phase shifts between them, enabling the
whole 2π phase circulation (S ¼ 1). The stability regions of the
gap vortices reduce a little bit compared with their fundamental
gap solitons counterpart because of the existence of destructive
interaction among the four solitons, as can be seen from the
curve NðμÞ and the associated stability regions portrayed in
Figs. 4(a)–4(c) for the three Pythagorean angles. Also, a de-
creasing relation NðV0Þ proceeds for the vortex gap solitons,
according to Fig. 4(d). The schematic shapes of the vortex gap
solitons are displayed in Figs. 4(h)–4(j), the cross-sectional cut
at y ¼ 1.5 is displayed in Figs. 4(e)–4(g), and the associated
spatial phase structures are depicted in the bottom line of Fig. 4
[see Figs. 4(k)–4(m)], showcasing the twisted modes unique for
moiré lattices.

In direct perturbed simulations by solving the dynamical
equation [Eq. (1)], we can see that the stable vortex gap soliton
remains unchanged in long time evolution [Fig. 5(a)]; and for
the unstable ones, as those displayed in Figs. 5(b) and 5(c), only
their side peaks undergo regular oscillations and small strength
growth, demonstrating weak instability.

Fig. 5 Perturbed evolutions of gap vortices. Top-view profiles (a)–(c) and the perturbed evolution
in real time (d)–(f) of typical vortex gap solitons for the marked points (D, E , and F ) in Fig. 4(a):
stable (a), weakly unstable (b), and strongly unstable (c) gap vortices.
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4 Conclusion and Discussion
In sum, we have presented numerical investigations and theo-
retical analysis of nonlinear localizations of 2D ultracold atomic
Fermi gas in moiré optical lattices with repulsive (self-defocus-
ing) nonlinearity. A noteworthy finding is that, although being
formed in the systems with shallow optical lattices, the tightly
localized gap modes, including fundamental gap solitons and
vortices with topological charge S ¼ 1, laid inside the finite
gaps spaced apart by extremely flat Bloch bands of the under-
lying linear Bloch spectrum, were shown to have strong locali-
zation and robust stability properties. Our nonlinear localization
mechanism of ultracold atomic Fermi gas may be readily real-
ized in ultracold atomic laboratories worldwide by means of
a similar technique used in recently observed atomic Bose–
Einstein condensate and quantum phase transition in 2D twisted
bilayer optical lattices. We therefore expect the results predicted
here to be of great interest in nonlinear sciences, since we sug-
gest a new way for the creation and control of strongly localized
matter-waves beyond atomic Bose–Einstein condensate in
moiré optical lattices with shallow depth but exhibiting tunable
flat bands and numbered finite gaps. Given the fact that the
atomic Bose–Einstein condensate has recently been prepared
in twisted bilayer optical lattices,51 its Fermi counterpart (super-
fluid fermionic gases in moiré optical lattices) can be readily
implemented in the current state-of-the-art ultracold atomic lab-
oratories.
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